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Markov Chains and Hidden Markov Models



Reasoning over Time or Space

• Often, we want to reason about a sequence of observations where
the state of the underlying system is changing.
• Speech recognition

• Robot localization

• User attention
• Medical monitoring

• Global climate

• Need to introduce time (or space) into our models
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Markov Models (aka Markov chain/process)

• Value of X at a given time is called the state (usually discrete, finite)

• The transition model Ρ 𝑋! 𝑋!"#) specifies how the state evolves over
time

• Stationarity assumption: transition probabilities the same at all times
• Same as MDP transition model, but no choice of action
• Markov assumption:“future is independent of the past given the present”

• 𝑋!"# is independent of 𝑋$, … , 𝑋!%# 𝑔𝑖𝑣𝑒𝑛 𝑋!

X2X1 X3 X4
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Joint Distribution of a Markov Model

• Joint distribution:

• More generally:

X2X1 X3 X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)
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Chain Rule and Markov Models

• From the chain rule, every joint distribution over can
be written as:

• Assuming that for all t:

gives us the expression posited on the earlier slide:

X2X1 X3 X4

Xt ?? X1, . . . , Xt�2 | Xt�1

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|Xt�1)

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|X1, X2, . . . , Xt�1)

X1, X2, . . . , XT
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Markov Models 
• Explicit assumption for all t :
• Consequence, joint distribution can be written as:

• Implied conditional independencies:
• Past variables independent of future variables given the present
i.e., if or then:

• Additional explicit assumption: is the same for
all t

Xt ?? X1, . . . , Xt�2 | Xt�1

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)

Xt1 ?? Xt3 | Xt2t1 < t2 < t3 t1 > t2 > t3

P (Xt | Xt�1)
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Conditional Independence

• Basic conditional independence:
• Past and future independent of the present
• Each time step only depends on the previous
• This is called the (first order) Markov property

• Note that the chain is just a (growable) BN
• We can always use generic BN reasoning on it if we truncate the chain at a
fixed length
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Example Markov Chain: Weather

• States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1
0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1

rain sun 0.3
rain rain 0.7

§ Initial distribution: 1.0 sun

§ CPT P(Xt | Xt-1):
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Example Markov Chain: Weather
• Initial distribution: 1.0 sun

• What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1

9

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1

rain sun 0.3
rain rain 0.7



Mini-Forward Algorithm

• Question:What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (xt�1, xt)

=
X

xt�1

P (xt | xt�1)P (xt�1)
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Example Run of Mini-Forward Algorithm

§ From initial observation of sun

§ From initial observation of rain

§ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)
…
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• Stationary distribution:
• The distribution we end up with is 

called the stationary distribution 
of the chain

• It satisfies

Stationary Distributions

• For most chains:
• Influence of the initial distribution
gets less and less over time.

• The distribution we end up in is
independent of the initial distribution

P1(X) = P1+1(X) =
X

x

P (X|x)P1(x)

P1
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Example: Stationary Distributions

• Question:What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1
rain sun 0.3

rain rain 0.7

P1(sun) = P (sun|sun)P1(sun) + P (sun|rain)P1(rain)

P1(rain) = P (rain|sun)P1(sun) + P (rain|rain)P1(rain)

P1(sun) = 0.9P1(sun) + 0.3P1(rain)

P1(rain) = 0.1P1(sun) + 0.7P1(rain)

P1(sun) = 3P1(rain)

P1(rain) = 1/3P1(sun)

P1(sun) + P1(rain) = 1

P1(sun) = 3/4

P1(rain) = 1/4Also:
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Application of Stationary Distribution: Web Link 
Analysis
• PageRank over a web graph

• Each web page is a state

• Initial distribution: uniform over pages

• Transitions:

• With prob. c, uniform jump to a
random page (dotted lines, not all shown)

• With prob. 1-c, follow a random
outlink (solid lines)

• Stationary distribution
• Will spend more time on highly reachable pages
• E.g. many ways to get to the Acrobat Reader download page
• Somewhat robust to link spam
• Google 1.0 returned the set of pages containing all your keywords in decreasing
rank, now all search engines use link analysis along with many other factors (rank
actually getting less important over time)
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Application of Stationary Distributions:
Gibbs Sampling*

• Each joint instantiation over all hidden and
query variables is a state: {X1,…, Xn} = H U Q

• Transitions:
• With probability 1/n resample variable Xj according to

P(Xj | x1, x2,…, xj-1,xj+1,…, xn, e1,…, em)

• Stationary distribution:
• Conditional distribution P(X1, X2 ,… , Xn|e1,…, em)
• Means that when running Gibbs sampling long enough
we get a sample from the desired distribution

• Requires some proof to show this is true!
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Inference in Ghostbusters

• A ghost is in the grid somewhere

• Sensor readings tell how close a square is to
the ghost
• On the ghost: red

• 1 or 2 away: orange

• 3 or 4 away: yellow

• 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

• Sensors are noisy, but we know P(Color | Distance)
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Video of Demo Ghostbusters Basic Dynamics
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Video of Demo Ghostbusters Circular Dynamics
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Video of Demo Ghostbusters Whirlpool Dynamics
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Hidden Markov Models
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Hidden Markov Models
• Markov chains not so useful for most agents

• Need observations to update your beliefs

• Hidden Markov models (HMMs)
• Underlying Markov chain over states X
• You observe evidence E at each time step

• Xt is a single discrete variable; Et may be continuous and may consist of
several variables

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Example: Weather HMM

Umbrellat-1 Umbrellat Umbrellat+1

Weathert-1 Weathert Weathert+1

• An HMM is defined by:

• Initial distribution:

• Transitions:

• Emissions:

P (Xt | Xt�1)

P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)
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Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

True False

sun 0.2 0.8

rain 0.9 0.1



HMM: Probabilistic Model

23

• Transitional probabilities: transition probabilities between
states
• 𝐴!" ≡ 𝑃(𝑋# = 𝑗|𝑋#$% = 𝑖)

• Initial state distribution: start probabilities in different
states
• 𝜋! ≡ 𝑃(𝑋% = 𝑖)

• Observation model: Emission probabilities associated with
each state
• 𝑃(𝐸#|𝑋#)



Joint Distribution of an HMM

• Joint distribution:

• More generally:

X5
X2

E1

X1 X3

E2 E3 E5

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)
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Conditional Independencies

• State independent of all past states and all past evidence given the
previous state, i.e.:

• Evidence is independent of all past states and all past evidence given
the current state, i.e.:

Xt ?? X1, E1, . . . , Xt�2, Et�2, Et�1 | Xt�1

X2

E1

X1 X3

E2 E3

Et ?? X1, E1, . . . , Xt�2, Et�2, Xt�1, Et�1 | Xt
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Conditional Independence
• HMMs have two important independence properties:

• Markov hidden process: future depends on past via the present

• Current observation independent of all else given current state

• Quiz: does this mean that evidence variables are guaranteed to be
independent?

• [No, they tend to correlated by the hidden state]

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Real HMM Examples
• Speech recognition HMMs:

• Observations are acoustic signals (continuous valued)
• States are specific positions in specific words (so, tens of thousands)

• Machine translation HMMs:
• Observations are words (tens of thousands)
• States are translation options

• Robot tracking:
• Observations are range readings (continuous)
• States are positions on a map (continuous)

• Molecular biology:
• Observations are nucleotides ACGT
• States are coding/non-coding/start/stop/splice-site etc.
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Inference tasks
• Filtering: P(Xt|e1:t)

• belief state—input to the decision process of a rational agent

• Prediction: P(Xt+k|e1:t) for k > 0
• evaluation of possible action sequences; like filtering without the evidence

• Smoothing: P(Xk|e1:t) for 0 ≤ k < t
• better estimate of past states, essential for learning

• Most likely explanation: arg maxx1:tP(x1:t | e1:t)
• speech recognition, decoding with a noisy channel

28



Inference tasks

Filtering: P(Xt|e1:t)

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt+k|e1:t)

Smoothing: P(Xk|e1:t), k<t Explanation: P(X1:t|e1:t)
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Filtering / Monitoring
• Filtering, or monitoring, or state estimation, is the task of maintaining the
distribution f1:t = P(Xt|e1:t) over time

• We start with f0 in an initial setting, usually uniform

• Filtering is a fundamental task in engineering and science

• The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was
invented in 1960 and used for trajectory estimation in the Apollo program; core
ideas used by Gauss for planetary observations; 788,000 papers on Google Scholar
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Example: Ghostbusters HMM
• P(X1) = uniform

• P(X|X’) = usually move clockwise, but sometimes
move in a random direction or stay in place

• P(Rij|X) = same sensor model as before:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X|X’=<1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0X5

X2

Ri,j

X1 X3 X4

Ri,j Ri,j Ri,j
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Video of Demo Ghostbusters – Circular Dynamics -- HMM
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Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake
Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer
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Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

10Prob
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Example: Robot Localization

t=2

10Prob
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Example: Robot Localization

t=3

10Prob
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Example: Robot Localization

t=4

10Prob
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Example: Robot Localization

t=5

10Prob
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Inference: Base Cases

E1

X1

X2X1
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Filtering Algorithm
• Aim: devise a recursive filtering algorithm of the form
• P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t) )

• P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
= α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
= α P(et+1|Xt+1) P(Xt+1| e1:t)
= α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt, e1:t)

40

PredictUpdateNormalize

Bayes’ rule

conditional independence

Condition 
on Xt



Filtering Algorithm
• Aim: devise a recursive filtering algorithm of the form
• P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t) )

• P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
= α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
= α P(et+1|Xt+1) P(Xt+1| e1:t)
= α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt, e1:t)
= α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt)

41

Bayes’ rule

conditional independence

conditional 
independence

Condition on Xt



Filtering Algorithm
• P(Xt+1|e1:t+1) = α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt)

• 𝒃!"# = 𝐹𝑂𝑅𝑊𝐴𝑅𝐷(𝒃! , 𝑒!"#) 𝒃!"# = 𝑃(𝑋!"#|𝑒#:!"#)
• Cost per time step:O(|X|2) where |X| is the number of states
• Time and space costs are constant, independent of t
• O(|X|2) is infeasible for models with many state variables
• We get to invent really cool approximate filtering algorithms

42

PredictUpdateNormalize



And the Same Thing in Linear Algebra

43

• Transition matrix T, observation probability vector Ot

• Observation vector has state likelihoods for Et

• E.g., for U1 = true, o1 = ( )
• Filtering algorithm becomes

𝒃′# = 𝑃 𝑋#&% 𝑒%:# = 𝑇(𝒃#

bt+1 = α 𝑂!"#⨀𝒃′!

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1
rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

0.2
0.9



Example: Weather HMM

Umbrella1 Umbrella2

Weather
0

Weather
1

Weather
2

b(sun) = 0.5
b(rain)  = 0.5

0.6
0.4

b(sun) = 0.25
b(rain) = 0.75

0.45
0.55

b(sun) = 0.154
b(rain) = 0.846

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

P(W0)

sun rain

0.5 0.5

predict predict
update update
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Example: Passage of Time
• As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)
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Example: Observation
• As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation

46

• Basic idea: beliefs “reweighted” by likelihood of evidence
• Unlike passage of time, we have to renormalize

𝒃′!=TT bt bt+1 = α 𝑂#&%⨀ 𝒃′#



Recap: Predict & Update

Passage of time 
(Before observation)

After observation
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bt+1 = α 𝑂#&%⨀𝒃′#

𝒃′!=TT bt bt+1 = α 𝑂#&%⨀𝒃′#



Online Belief Updates
• Every time step, we start with current P(X | evidence)
• We update for time:

• We update for evidence:

• The forward algorithm does both at once (and doesn’t normalize until
end)

XtXt-1

Xt

Et

48

𝒃′! = 𝑇"𝒃!P(Xt+1|e1:t) = åxt P(xt | e1:t) P(Xt+1|xt)

P(Xt+1|e1:t+1) = α P(et+1|Xt+1) P(Xt+1|e1:t)

bt+1 = α 𝑂#&%⨀𝒃′#



Particle Filtering
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Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

• Filtering: approximate solution

• Sometimes |X| is too big to use exact inference
• |X| may be too big to even store B(X)
• E.g. X is continuous

• Solution: approximate inference
• Track samples of X, not all values
• Samples are called particles
• Time per step is linear in the number of samples
• But: number needed may be large
• In memory: list of particles, not states

• This is how robot localization works in practice

• Particle is just new name for sample
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Representation: Particles
• Our representation of P(X) is now a list of N particles
(samples)
• Generally, N << |X|
• Storing map from X to counts would defeat the point

• P(x) approximated by number of particles with value x
• So, many x may have P(x) = 0!
• More particles, more accuracy

• Usually we want a low-dimensional marginal
• For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)
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Particle Filtering: Prediction Step
• Each particle is moved by sampling its next position

from the transition model

• This is like prior sampling – samples’ frequencies reflect the
transition probabilities

• Here, most samples move clockwise, but some move in
another direction or stay in place

• This captures the passage of time
• If enough samples, close to exact values before and after

(consistent)

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)
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• Slightly trickier:
• Don’t sample observation, fix it

• Similar to likelihood weighting, downweight samples 
based on the evidence

• As before, the probabilities don’t sum to one, since all 
have been downweighted (in fact they now sum to (N 
times) an approximation of P(e))

Particle Filtering: Update Step

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

53

𝑒: 𝑐𝑜𝑙𝑜𝑟#,% = 𝑟𝑒𝑑



Particle Filtering: Resample
• Rather than tracking weighted samples, we
resample

• N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

• This is equivalent to renormalizing the
distribution

• Now the update is complete for this time step,
continue with the next one

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)
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Particle Filtering: Summary

• Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)
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Video of Demo – Moderate Number of Particles
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Robot Localization

• In robot localization:
• We know the map, but not the robot’s position

• Observations may be vectors of range finder readings
• State space and readings are typically continuous (works basically like a very fine
grid) and so we cannot store B(X)

• Particle filtering is a main technique
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Particle Filter Localization (Laser)
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Particle Filter Localization (Sonar)
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Robot Mapping

60

• SLAM: Simultaneous Localization And Mapping
• Robot does not know map or location
• Localization: Determine state xt(j) consists of
position+orientation

• (Each map usually inferred exactly given sampled
position+orientation sequence: RBPF)



Particle Filter SLAM – Video 1
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Particle Filter SLAM – Video 2
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HMM examples

63

• Some applications of HMM
• Speech recognition, NLP, activity recognition

• Part-of-speech-tagging

𝑁𝑁𝑃 𝑉𝐵𝑍 𝑉𝐵𝑇𝑜

Students are

𝑉𝐵𝑁

expected to study



Acoustic Feature Sequence
• Time slices are translated into acoustic feature vectors (~39 real numbers

per slice)

• These are the observations E, now we need the hidden states X

fre
qu

en
cy

……………………………………………..e12e13e14e15e16………..
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Speech State Space
• HMM Specification

• P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each
kind of sound)

• P(X|X’) encodes how sounds can be strung together

• State Space
• We will have one state for each sound in each word
• Mostly, states advance sound by sound
• Build a little state graph for each word and chain them together to form the
state space X
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Decoding
• Finding the words given the acoustics is an HMM inference problem

• Which state sequence x1:T is most likely given the evidence e1:T?

• From the sequence x, we can simply read off the words
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Most Likely Explanation
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Inference tasks
• Filtering: P(Xt|e1:t)

• belief state—input to the decision process of a rational agent

• Prediction: P(Xt+k|e1:t) for k > 0
• evaluation of possible action sequences; like filtering without the evidence

• Smoothing: P(Xk|e1:t) for 0 ≤ k < t
• better estimate of past states, essential for learning

• Most likely explanation: arg maxx1:tP(x1:t | e1:t)
• speech recognition, decoding with a noisy channel
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Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)
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State Trellis
• State trellis: graph of states and transitions over time

• Each arc represents some transition
• Each arc has weight
• Each path is a sequence of states
• The product of weights on a path is that sequence’s probability along with the evidence
• Forward algorithm computes sums of paths, Viterbi computes best paths

sun

rain

sun

rain

sun

rain

sun

rain
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Most Likely Explanation = Most Probable Path
• State trellis: graph of states and transitions over time

• Each arc represents some transition xt-1 ® xt
• Each arc has weight P(xt | xt-1) P(et | xt) (arcs to initial states have weight P(x0) )
• The product of weights on a path is proportional to that state sequence’s probability
• Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

arg maxx1:tP(x1:t | e1:t)
= arg maxx1:tα P(x1:t , e1:t)
= arg maxx1:t P(x1:t , e1:t) 
= arg maxx1:t P(x0) Õt P(xt | xt-1) P(et | xt) 
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X0 X1                 … XT
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Forward / Viterbi Algorithms

Forward Algorithm (sum)
For each state at time t, keep track of 
the total probability of all paths to it

sun

rain

sun

rain

sun

rain

sun

rain

X0 X1                 … XT

Viterbi Algorithm (max)
For each state at time t, keep track of     
the maximum probability of any path to it

ft+1 = FORWARD(ft , et+1)
= α P(et+1|Xt+1) åxt P(Xt+1| xt) ft

mt+1 = VITERBI(mt , et+1)
= P(et+1|Xt+1) maxxt P(Xt+1| xt) mt
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Viterbi Algorithm Contd.

Time complexity?
O(|X|2 T)

X0 X1                 X2 XT

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

U1=true U2=false U3=true

0.5

0.5

0.18

0.63

0.09
0.06

0.72

0.07

0.01
0.24

0.18

0.63

0.09
0.06

Space complexity?
O(|X| T)

0.5

0.5

0.09

0.315

0.076

0.022

0.0136080

0.0138495

Number of paths?
O(|X|T)
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Viterbi in Negative Log Space

argmax of product of probabilities 
= argmin of sum of negative log probabilities 
= minimum-cost path

sun

rain

sun

rain

sun

rain

sun

rain

Wt-
1

P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

1.0

1.0

2.47

0.67

3.47
4.06

0.72

3.84

6.64
2.06

2.47

0.67

3.47
4.06S

G

Viterbi is essentially breadth-first graph search

What about A*?
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